Bicomponent Fibers for Thermoplastic Composites: Towards a New Intermediate Material for Rapid Stamp Forming

Coating individual glass filaments with a thermoplastic sheath is proposed as an alternative concept to existing hybrid intermediate materials to facilitate the high volume production of thermoplastic composites. The intimate contact between fiber and matrix in bicomponent fibers provides full wet-out of the fibers while retaining the draping possibilities of the unconsolidated rovings. To manufacture such bicomponent fibers, we propose a dip-coating process incorporated in-line with glass fiber spinning facilities. Here, an experimental proof of concept for dip-coating single filaments in dilute polymer solutions and an analytical feasibility study are given.

Introduction

With European legislation continuously reducing the emission limits for vehicles, the automotive industry faces the challenge of producing more energy efficient vehicles through strategies such as lightweighting. The use of fiber-reinforced composites is broadly considered as a viable, but labor intensive alternative and is thus seldom chosen for high volume production schemes. Let’s change that!

We are developing a new hybrid intermediate material for thermoplastic composites which is assumed to significantly shorten cycle times in rapid stamp forming processes. The idea is to eliminate time-consuming impregnation phenomena during preform consolidation by providing individually hybridized filaments, hereafter described as bicomponent fibers.

Experimental Proof of Concept

Analytical Feasibility Study

We identified an overlap in processing conditions:

Glass Fiber Spinning: Equalizing the volumetric flows of glass at take-up (bulk velocity) and the spinneret (Hagen-Poiseuille flow) allows to calculate the take-up velocity for a target fiber diameter D_f.

Dip-Coating of Cylinders: The normalized coating thickness h/r is largely dependent on the capillary number Ca of the flow. Tallmadge [4] proposed an advanced model for dip-coating from non-Newtonian fluids, which was employed to describe coating with a PEA-chloroform solution (Fig. 8).

Materials

Single glass fibers with a 1 wt% 3-aminopropyl/tetraethoxysilane sizing were dip-coated in different solutions of poly(ester-amide) (PEA, Fig. 3) in chloroform.

Conclusion and Expected Impact

We have proven that the fabrication of bicomponent fibers for structural composites is possible through dip-coating of glass fibers in dilute polymer solutions. Theory suggests that this process can be implemented in-line with melt spinning, leading to an economically and ecologically viable high-volume production of this novel intermediate material.

The use of bicomponent fibers in rapid stamp forming of thermoplastic composites is expected to reduce cycle times as well as overall production costs, rendering composites more attractive for the automotive sector and more accessible for the medium- to low-budget markets. Successful industrialization of the presented technology could lead to a significant increase in advanced lightweighting of vehicular structures.

References

Partners

Swiss National Science Foundation (Project No. 200021_165994)
Dow Europe GmbH
Leibnitz Institute of Polymer Research Dresden