CA B1.: Integration, Operation and Optimization of Mobility Systems

Prof. Vinzenz V. Härri (FHZ), Co-Coordinator B1
SCCER Mobility: 2nd Annual Conference
August 26th 2015 – ETH Zürich, ML Halle – E12
Overview

1. Reminder

2. News

3. Perspective
Scope: Wider System Aspects of Mobility

The system shells

B2: Sustainability
B1: Wider System aspects
A: components & technical systems

- B1: Wider System aspects
 - A: components & technical systems
 - A1 & A2
 - A3

- B2: Sustainability
 - B1: Wider System aspects
 - A: components & technical systems

- A3
 - Batteries and Drivetrain components
 - Energy converters
 - Advanced SotA vehicles

- B1
 - Spatio-temporal data acquisition
 - Integration, operation of mobility systems
 - New carriers & freight
 - Infra-structure
 - urban planning
Overall Context

B1: Measures for optimization of efficiency by system approach

Supply: Technologies and infrastructure integration

Demand: Users, Linking mobility, environmental data, urban planning
Abstract B1

B1 deals with

- increasing the energy efficiency in transportation from a systems point of view: integration of new technologies, overall feasibility of mobility systems in relation to grids, buildings, users....

- To this end users, technology and the infrastructure are interfaced with each other by linking mobility patterns with urban planning and environmental data.

- This includes simulating and monitoring people’s spatio-temporal behavior in near real-time with the goal of calculating and communicating energy saving options.

- Such approach will result in an optimization of mobility systems and therefore a reduction of the future energy demand.
Subtasks

- **B1.1:** Integration, Infrastructure & New Urban Transport
- **B1.2:** Spatio-temporal Data Acquisition & Analysis, Monitoring Devices and User Communication
- **B1.3:** Urban Planning & Environmental Impact
Road Map B1

Technology Roadmap 2013-2024 CA B1: Integration, Operation and Optimization of Mobility Systems

- System Dissemination
- System concepts & Realisation
- System Analysis & preparation
- Assessment
- Pilots
- Support of industrialization
- Overall system integrations
- Grid infrastructure interactions
- Personalized user energy apps
- Infrastructure and new freight, railways and urban mobility concepts
- Spatio-temporal data analysis
- Urban planning & environmental impact
- Feasibility data acquisition sensors, new freight and urban transport concepts
- Tool preparation for evaluation, simulations
- Advanced methodologies for system integration
- Short Term (2013-2016)
- Mid Term (2017-2020)
- Long Term (2021-2024)
Research Groups in CA B1

<table>
<thead>
<tr>
<th>Surname</th>
<th>Firstname</th>
<th>E-Mail Address</th>
<th>Group (RG)</th>
<th>Subtask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duvanel</td>
<td>Olivier</td>
<td>olivier.duvanel@hslu.ch</td>
<td>HSLU - IIEE</td>
<td>B1.1</td>
</tr>
<tr>
<td>Habermacher</td>
<td>Patrick</td>
<td>patrick.habermacher@hslu.ch</td>
<td>HSLU - IIEE</td>
<td>B1.1</td>
</tr>
<tr>
<td>Härri (Co-Co.)</td>
<td>Vinzenz</td>
<td>vinzenz.haerri@hslu.ch</td>
<td>HSLU - IIEE</td>
<td>B1.1</td>
</tr>
<tr>
<td>Saeedina</td>
<td>Mahnam</td>
<td>mahnam.saeednia@ivt.baug.ethz.ch</td>
<td>ETHZ - IVT VS</td>
<td>B1.1</td>
</tr>
<tr>
<td>Schwertner</td>
<td>Michael</td>
<td>michael.schwertner@ivt.baug.ethz.ch</td>
<td>ETHZ - IVT VS</td>
<td>B1.1</td>
</tr>
<tr>
<td>Weidmann</td>
<td>Ulrich Alois</td>
<td>weidmann@ivt.baug.ethz.ch</td>
<td>ETHZ - IVT VS</td>
<td>B1.1</td>
</tr>
<tr>
<td>Axhausen</td>
<td>Kay W.</td>
<td>axhausen@ivt.baug.ethz.ch</td>
<td>ETHZ - IVT VP</td>
<td>B1.2</td>
</tr>
<tr>
<td>de Martinis</td>
<td>Valerio</td>
<td>valerio.demartinis@ivt.baug.ethz.ch</td>
<td>ETHZ - IVT VS</td>
<td>B1.2</td>
</tr>
<tr>
<td>Onillon</td>
<td>Emmanuel</td>
<td>emmanuel.onillon@csem.ch</td>
<td>CSEM</td>
<td>B1.2</td>
</tr>
<tr>
<td>Raubal (Co-Co.)</td>
<td>Martin</td>
<td>mraubal@ethz.ch</td>
<td>ETHZ - IKG</td>
<td>B1.2</td>
</tr>
<tr>
<td>Schneider</td>
<td>Simon</td>
<td>sscheider@ethz.ch</td>
<td>ETHZ - IKG</td>
<td>B1.2</td>
</tr>
<tr>
<td>Weiser</td>
<td>Paul</td>
<td>pweiser@ethz.ch</td>
<td>ETHZ - IKG</td>
<td>B1.2</td>
</tr>
<tr>
<td>Franklin</td>
<td>Ulrike</td>
<td>ulrike.franklin@bfh.ch</td>
<td>BFH - AHB</td>
<td>B1.3</td>
</tr>
<tr>
<td>Froemelt</td>
<td>Andreas</td>
<td>froemelt@ifu.baug.ethz.ch</td>
<td>ETHZ - IfU</td>
<td>B1.3</td>
</tr>
<tr>
<td>Hellweg</td>
<td>Stephanie</td>
<td>stefanie.hellweg@ifu.baug.ethz.ch</td>
<td>ETHZ - IfU</td>
<td>B1.3</td>
</tr>
<tr>
<td>Huber</td>
<td>Joachim</td>
<td>joachim.huber@bfh.ch</td>
<td>BFH - AHB</td>
<td>B1.3</td>
</tr>
<tr>
<td>Steubing</td>
<td>Bernhard</td>
<td>steubing@ifu.baug.ethz.ch</td>
<td>ETHZ - IfU</td>
<td>B1.3</td>
</tr>
<tr>
<td>Vanderbo</td>
<td>Carl</td>
<td>vardenbo@ifu.baug.ethz.ch</td>
<td>ETHZ - IfU</td>
<td>B1.3</td>
</tr>
</tbody>
</table>
Overview

1. Reminder

2. News

3. Perspective
CA B1.1: Infrastructure & New Urban Transport
Context B1.1

- Integrating technical subsystems: drive-chains, overhead-lines and pantographs, inductive or other power transfer devices, static storages, substations and decentralized renewable power supply hubs
- Overall benefits by reducing energy losses in the supply chain: planning of distributed and intelligent grid infrastructures, which satisfy the demand of dynamic control for handling the high power peaks by breaking and acceleration
- Overall evaluation and optimization of the most promising transport carriers and their optimal multimodal combination from an energy efficiency point-of-view
- Including advanced and new carriers: trains, LRT, elevators, escalators, people movers, cable cars...
- Taking into account operation profiles and applied in pilot transportation projects
- Lately: also topics of green ITS in the system context
Topics IVT

Automatic train operation joint with centralized train management system
Holistic optimization of energy consumption and network capacity in rail systems

Reduction of the peak loads of energy consumption in integrated timetable systems
Energy storage on locomotives and/or new timetables with smoothed connection systems

Electromobility in urban public transport systems
Decision method for the evaluation of road-bound electric public transport systems

Enhanced flexibility and productivity in the single waggonload system
New opportunities given by hybrid diesel-electric locomotives for multipurpose operation
Energy savings in rail freight by traffic flow optimization

SCCER Mobility – Competence Area B 1.1 (group IVT Weidmann)

The Approach

- Freight rail traffic is a non negligible % of rail traffic in Switzerland (≈ 20%)
- Energy efficiency in rail freight has not been deeply investigated so far.
- Railway operation and energy consumption aspects may benefit from energy efficiency solutions specifically dedicated to rail freight

The Framework

- Based on the supply design modeling approach
- Applications on speed profiles and rescheduling procedures.
- Optimization model built with MatLab and Cplex (IVT internal code). Simulation model built with a commercial tool (OpenTrack)

Key factors for energy efficiency implementation

- Route choice
- Optimal speed profiles
- Path assignment
- Timetable
- ... (DAS, Adaptive traffic control, Multi objective rescheduling, ...)

First results

By optimizing the speed profiles of the train:

- Savings up to 14% approximatively between 2 consecutive stops (ideal condition)
- With an increased running time of 5% in average.

Additional saving can be obtained with appropriate multi objective rescheduling procedures for avoiding unplanned stops.

Currently, real trajectories with associated energy consumptions from onboard monitoring systems are under analysis.

- De Martinis, Weidmann. “Definition of energy-efficient speed profiles within rail traffic by means of supply design models”. *Research in Transportation Economics, Elsevier (publication within the year)*
- Toletti, De Martinis, Weidmann. “What about train length and energy efficiency of freight trains in rescheduling models?”. *Transportation Procedia (publication within the year)*
Achieved in 2015

- Measurement’s on Switchbus (Louis Paler, Solar taxi)

Results:
⇒ 5 % for ancillary without HVAC
⇒ 92Wh/t*km
⇒ Autonomy: 220 km
⇒ Best Profile >300km!
Micro Mobility and Grid's Integration

E-Bike
⇒ Better Recuperation
⇒ Integration of storage
⇒ Bachelor Thesis, CTI-Check

Magic-Bike AG
CTI-Check
⇒ Optimisation of components

Mobility ⇔ Grid
FURIES WP4.5
⇒ Intelligent Control
⇒ Easy integration
⇒ High autonomy
Urban Transport and Infrastructure (IVT & IIEE)

- Support of E-buses market introduction
- Cooperation with Ceekon AG (project VBZ)

→ Specification of today’s and future busses?
→ Understanding interactions of line service and charging (Grids)
Best Practice??

Lighthouse Project: in discussion/planning
SCCER Transportation Vision & Best Practice in “Luzern-Süd” (Mattenhof)

- VVL and TUs
- Verkehrsrverbund Luzern
- Mobimo AG
- IVT Axhausen
Urban Transport and Infrastructure

- Interaction with SCCER (Grids) → Bridge to WP 4.5

1 Tag im Jahr 2030

Power Transmission / Grid Single Home / Quarter / Region Electric - Vehicle Building

Claim: Grid - Living & Mobility
«Intelligente Lösungen für die Energiewende» und «Gebäude als System»

Grid & Power Transmission Quarter / Building & Energy Storage E-Vehicle & Charging Infrastructure
CA B1.2: Spatio-temporal Data Acquisition & Analysis, Monitoring Devices and User Communication
Context B1.2

- Novel data sources, sensors, and monitoring devices will allow us in the future to tackle the challenges of reducing CO2 emissions and energy consumption from a new perspective.
- Development of an integrative framework for utilizing ICT (Information and Communication Technologies) to acquire massive data from people regarding their daily movement patterns and energy consumption.
- Goal of calculating and communicating energy saving options, e.g., the most energy efficient route to take, through a mobile service to the individual.
- Forecasting and predicting urban traffic and corresponding energy consumption.
- Developed personalized energy mobility service/app will be tested and evaluated for a large study in the cantons of Zürich and Luzern.
Heyko Stöber
GoEco!

“How can we encourage people to engage in more sustainable mobility lifestyles?”

Gamification and Eco-Feedback (Poster Cellina et al.)

- Mobile app: Tracks trips and suggests alternative, low-impact options.
- Living Lab User Tests: Long-Term Large-Scale User study

Matching Complementary Transport Needs (Poster Bucher et al.)

- Queries are results for others with complementary needs.
- Ex: Person A looking for car-pooling partners provides result for person B who is looking for transport options.
- Model allows to automatically match such needs.

Diagram showing the relationships between transport modes and needs.
Optimization at building/district level

Energy flows

Optimization principle

Copyright 2015 CSEM | SCCER MOBILITY | YST | Page 1
CA B1.3:
Urban Planning & Environmental Impact
Context B1.3

- The aim is to show consequences of the interaction of future (growing) mobility (public and private) on housing, settlement and community infrastructure: on life quality. The results will help communities and related organisations (public and private) to optimize urban planning and infrastructure, i.e. to optimize related opportunity costs.
- Modelling the energy demand and impacts of housing and land-based mobility for all households in Switzerland
- Cluster analysis of urban settlements: Interaction of settlements typologies and mobility behaviour in Switzerland.
- Integration of future scenarios and optimization approaches
- Economic analysis, consequences and products
- Implementation into practice
B1.3: Urban Planning and Environmental Impact

1) LCA-Household-Consumption-Model:

1.1) Modelling GHG emissions from housing and mobility of individual households (here: St. Gallen)

1.2) Studying differences of behavior patterns between individual households and different regions

![Chart showing GHG emissions comparison](chart.png)

Main life cycle GHG area and statistics per municipality:
- Housing: Energy Use
- Housing: Infrastructure
- Mobility: Motorized Private Transport
- Mobility: Public Transport
B1.3: Urban Planning and Environmental Impact

2) Urban-Structure-Analysis-Tool:

2.1) **Database**: OSM, GWR, GWS

2.2) **Tool**: Definition of all the precise parameters to filter the three main specific architectural typologies with their subcategories.

2.3) **Analysis**: Automatic analysis of all three typologies from the field of city planning. The analysis is working for whole CH and gives a graphical feedback for each household.

3) **Outlook Data-Matching**: Refined analyses of GHG emissions and mobility consumption data with regard to different urban settlement typologies and urban structures.
Industry partners
CA B1: Scientific Exchange and Knowledge Transfer
Scientific Exchange, Knowledge Transfer: Publications

Scientific Exchange, Knowledge Transfer: Publications

Scientific Exchange, Knowledge Transfer: Others

- Course unit in “Advanced Environmental Assessments“ (Hellweg)
- Poster Presentation: Assessing the Environmental Impacts from Housing and Land-Based Mobility Demand of Households on a Regional Level), Froemelt, A.; Hellweg, S. ISIE Conference 2015, Guildford, UK, 7-10 July 2015
- Courses within bachelor and MSE master modules, HSLU
- Presentations on BAV event, 23th of June 2015, ETH Zentrum (Weidmann/DeMArtinis, Raubal, Härri)
Overview

1. Reminder

2. News

3. Perspective
Next Steps B1

- Definition Proposal 2015
- Increasing bridge function to other SCCER (FURIES, CREST...)
- Expanding the investigations for system aspects challenges for future transportation systems (e.g. green ITS, ..)
- Practical realization of new solutions (ligthouse projects)
- Taking part in the master course development